MMBS 111: Introductory Microbiology

Prior Learning Assessment (PLA) Study Guide

Resources

The following are resources that you may want to make use of as you review for this PLA.

- 1. The textbook we are currently using for MMBS 111 is Microbiology Fundamentals: A Clinical Approach by Cowan/Bunn. You can find a copy in the CWI Library.
- You may access lectures that Teresa Rich has recorded and posted on YouTube. You can find them on her YouTube channel at
 - https://www.youtube.com/channel/UCsi5XuHNv6apuXrCgFfHeGg?view_as=subscriber.

Topics & Objectives

Introduction to Microbes and Their Building Blocks

- 1. Be able to list the six types of microbes.
- 2. Know the differences between the different types of microbes.
- 3. Be able to describe the role and impact of microbes on the earth.
- 4. Point out three characteristics all cells share.
- 5. Differentiate among the terms nomenclature, taxonomy, and classification.
- 6. Create a mnemonic device for remembering the taxonomic categories.
- 7. Correctly write the binomial name for a microorganism.
- 8. Draw a diagram of the three major domains.
- 9. Explain the difference between traditional and molecular approaches to taxonomy.
- 10. Explain the theory of evolution.
- 11. Be able to define "theory" as it is used in the scientific community.
- 12. Explain why the theory of evolution still called a theory.
- 13. Explain the ways that humans manipulate organisms for their own uses.
- 14. Summarize the relative burden of human disease caused by microbes.
- 15. Differentiate between prokaryotic and eukaryotic microorganisms.
- 16. Identify a third type of microorganism.
- 17. Compare and contrast the relative sizes of the different microbes.
- 18. Name the four main families of biochemical.
- 19. Know the structure and function of each biochemical family.
- 20. Provide examples of cell components made from each of the families of biochemical.
- 21. Explain primary, secondary, tertiary, and quaternary structures as seen in proteins.
- 22. List the three components of nucleic acids.
- 23. Name the nucleotides of DNA and RNA.

24. List the three components of ATP.

Chapter 3: Prokaryotic Structure

- 1. Name the structures of all bacteria possess.
- 2. Name three structures some, but not all, bacteria possess.
- 3. Describe three major shapes of prokaryotes.
- 4. Describe the structure and function of four different types of bacterial appendages.
- 5. Explain how a flagellum works in the presence of an attractant.
- 6. Differentiate between the two main types of bacterial envelope structure.
- 7. Know the steps in the Gram stain and how it relates to bacterial envelopes.
- 8. Discuss why gram-positive cell walls are stronger than gram-negative cell walls.
- 9. Name a substance in the envelope structure of some bacteria that can cause severe symptoms in humans.
- 10. Identify five things that might be contained in bacterial cytoplasm.
- 11. Name the functions of the five things that might be contained in bacterial cytoplasm.
- 12. Detail the causes and mechanisms of sporogenesis and germination.
- 13. List some differences between archaea and bacteria.
- 14. List some similarities between archaeal and eukaryotes.
- 15. Explain what a bacterial species is.
- 16. Know some bacterial adaptions.

Eukaryotic Structure

- 1. Relate both prokaryotic and eukaryotic cells to the Last Common Ancestor.
- 2. Discuss some of the evidence for the theory of endosymbiosis.
- 3. List the types of eukaryotic microorganisms.
- 4. Differentiate between cilia and flagella in eukaryotes, and between flagella in prokaryotes and eukaryotes.
- 5. List which eukaryotic microorganisms have a cell wall.
- 6. List similarities and differences between eukaryotic and prokaryotic cytoplasmic membranes.
- 7. Describe the important parts of a nucleus.
- 8. Diagram how the nucleus, endoplasmic reticulum, and Golgi apparatus act together.
- 9. Explain the function of the mitochondria.
- 10. Explain the importance of ribosomes, and differentiate between eukaryotic and prokaryotic types.
- 11. List and describe the three main fibers of the cytoskeleton.
- 12. Know the characteristics of fungi, protozoa, and helminthes.
- 13. List two detrimental and two beneficial activities of fungi (from the viewpoint of humans).

- 14. List some general features of fungal anatomy.
- 15. Differentiate among the terms heterotrophic, saprobe, and parasite.
- 16. Connect the concepts of fungal hyphae and a mycelium.
- 17. Describe two ways in which fungal spores arise.
- 18. Use protozoan characteristics to explain why they are informally placed into a single group.
- 19. List three means of locomotion by protozoa.
- 20. Explain why a cyst stage might be useful to a protozoan.
- 21. Give an example of a disease caused by each of the four types of protozoa.
- 22. List the two major groups of helminthes and then the two subgroups of one of these groups.
- 23. Describe a typical helminth lifestyle.

Viral Structure & Life Cycles

- 1. Explain what it means when viruses are described as "filterable".
- 2. Identify better terms for viruses than "alive" or "dead".
- 3. Discuss the size of viruses relative to other microorganisms.
- 4. Describe the function and structure(s) of viral capsids.
- 5. Distinguish between enveloped and naked viruses.
- 6. Explain the importance of viral surface proteins, or spikes.
- 7. Diagram the possible configurations that nucleic acid viruses may possess (double-stranded DNA, single-stranded DNA, etc.).
- 8. Diagram the five-step life cycle of animal viruses.
- 9. Explain what cytopathic effects are.
- 10. Discuss both persistent and transforming infections.
- 11. Provide a thorough description of of lysogenic and lytic bacteriophage infections.
- 12. Name two noncellular infectious agents besides viruses.
- 13. Analyze the relative importance of viruses in human infection and disease.
- 14. Discuss the primary reason that antiviral drugs are more difficult to design than antibacterial drugs.

Microbial Nutrition and Growth

- 1. Be able to list the essential nutrients of a bacterial cell.
- 2. Be able to differentiate between macronutrients and micronutrients.
- 3. Be able to construct four different terms that describe an organism's sources of carbon and energy.
- 4. Be able to define saprobe and parasite.
- Be able to discuss diffusion and osmosis.

- 6. Be able to identify the effects on a cell of isotonic, hypotonic, and hypertonic conditions.
- 7. Be able to name two types of passive transport and three types of active transport
- Know the environmental influences on microbes (temperature, gases, pH, osmotic pressure, radiation, hydrostatic/atmospheric pressure, and other organisms) and their effects on the microbes.
- 9. Be able to name five types of bacteria based on their temperature preferences.
- 10. Be able to explain how different organisms deal with oxygen.
- 11. Be able to name three physical factors besides temperature and oxygen requirements that microbes must contend with.
- 12. Be able to list and describe the five types of associations microbes can have with their hosts.
- 13. Be able to discuss characteristics of biofilms that differentiate them from planktonic bacteria.
- 14. Be able to describe the main way that bacteria divide.
- 15. Be able to define doubling time and how it relates to exponential growth.
- 16. Be able to compare and contrast the four phases of growth in a bacterial growth curve.
- 17. Be able to identify three methods besides a growth curve to count bacteria.

Microbial Metabolism

- 1. Describe the relationship among metabolism, catabolism, and anabolism.
- 2. Fully define the structure and function of enzymes.
- 3. Differentiate between constitutive and regulated enzymes.
- 4. Diagram some different patterns of metabolism.
- 5. Describe how enzymes are controlled.
- 6. Name the chemical in which energy is stored in cells.
- 7. Create a general diagram of a redox reaction.
- 8. Identify electron carriers used by cells.
- 9. Know how ATP is the repository of energy in the cell.
- 10. Name three basic catabolic pathways, and give an estimate of how much ATP each of them yields.
- 11. Write a summary statement describing glycolysis.
- 12. Describe the Krebs cycle.
- 13. Discuss the significance of the electron transport system.
- 14. Point out how anaerobic respiration differs from aerobic respiration.
- 15. Provide a summary of fermentation.
- 16. Describe how noncarbohydrate compounds are catabolized.
- 17. Be able to provide an overview of the anabolic stages of metabolism.
- 18. Be able to define amphibolism.

Microbial Genetics & Genetic Engineering

1. Define the terms genome and gene.

- 2. Differentiate between genotype and phenotype.
- 3. Draw a picture of a length of DNA, including all important chemical groups.
- 4. Explain how DNA replication takes place. Know the enzymes.
- 5. Use Okazaki fragments to explain leading and lagging strands.
- 6. Relate the new and old versions of the "central dogma."
- 7. Identify important differences between RNA and DNA.
- 8. Draw a picture of the process of transcription, including the enzymes and nucleic acids involved.
- 9. Draw a picture of the process of translation, including the enzymes and nucleic acids involved.
- 10. List the three types of RNA directly involved in translation.
- 11. Be able to use a codon chart.
- 12. Define codon and anticodon.
- 13. Identify on which molecules the promoter, the start codon, and the A and P sites appear.
- 14. Indicate how eukaryotic transcription and translation differ from these processes in prokaryotes.
- 15. Be able to define recombinant.
- 16. Be able to describe three forms of horizontal gene transfer used in bacteria.
- 17. Be able to describe the actions of transposons.
- 18. Be able to define the term mutation, and discuss its importance.
- 19. Be able to differentiate among frameshift, nonsense, silent, and missense mutations based on the original gene sequence compared to a mutated gene sequence..
- 20. Be able to explain the importance of restriction endonucleases to genetic engineering.
- 21. Be able to list the steps in the polymerase chain reaction.
- 22. Be able to describe how you can clone a gene into a bacterium.

Physical and Chemical Control of Microbes

- 1. Clearly define the terms sterilization, disinfection, decontamination, sanitization, antisepsis, and degermation, endospore, vegetative cell, trophozite, and cyst.
- 2. Identify the microorganisms that are most resistant and least resistant to control measures.
- 3. Define "-static" and "-cidal".
- 4. Name four categories of cellular targets for physical and chemical agents.
- 5. Name six methods of physical control of microorganisms.
- 6. Discuss both moist and dry heat methods, and identify multiple examples of both.
- 7. Define thermal death time and thermal death point.
- 8. Explain methods of moist heat control.
- 9. Name the desirable characteristics of chemical control agents.
- 10. Discuss chlorine and iodine and their uses.
- 11. List advantages and disadvantages to phenolic compounds.
- 12. Explain the mode of action of chlorhexidine.
- 13. Explain the applications of hydrogen peroxide agents.
- 14. Identify some heavy metal control agents.
- 15. Discuss the disadvantages of aldehyde agents.

16. Identify applications for ethylene oxide sterilization.

Antimicrobial Treatment

- 1. Be able to state the main goal of antimicrobial treatment.
- 2. Be able to identify the sources for most currently used antimicrobials.
- 3. Be able to describe two methods for testing antimicrobial susceptibility.
- 4. Be able to define therapeutic index, and identify whether a high or a low index is preferable.
- 5. Be able to explain the concept of selective toxicity.
- 6. Be able to list the five major targets of antimicrobial agents.
- 7. Be able to identify which categories of drugs are most selectively toxic and why.
- 8. Be able to distinguish between broad-spectrum and narrow-spectrum antimicrobials, and explain the significance of the distinction.
- 9. Be able to identify the microbes against which the various penicillins are effective.
- 10. Be able to explain the significance of beta-lactamases.
- 11. Be able identify two antimicrobials that act by inhibiting protein synthesis.
- 12. Be able to explain how drugs targeting folic acid synthesis work.
- 13. Be able to identify one example of a fluoroquinolone.
- 14. Be able to name a drug that targets the cellular membrane.
- 15. Be able to discuss how treatment of biofilm infections differs from that of nonbiofilm infections.
- 16. Be able to name the four main categories of antifungal agents.
- 17. Be able to explain why antiprotozoal and antihelminthic drugs are likely to be more toxic than antibacterial drugs.
- 18. Be able to list the three major targets of action of antiviral drugs.
- 19. Be able to discuss two possible ways that microbes acquire antimicrobial resistance.
- 20. Be able to list five cellular or structural mechanisms that microbes use to resist antimicrobials.
- 21. Be able to discuss at least two novel antimicrobial strategies that are under investigation.
- 22. Be able to distinguish between drug toxicity and allergic reactions to drugs.
- 23. Be able to explain what a superinfection is and how it occurs.

Interactions between Microbes and Humans

- 1. Be able to differentiate between colonization, infection, and disease.
- 2. Be able to enumerate the sites where normal biota is found in humans.
- 3. Be able to discuss how the Human Microbiome Project will change our understanding of normal biota.
- 4. Be able to point out how microbial antagonism can be helpful to the human host.
- 5. Differentiate between pathogenicity and virulence.
- 6. Define opportunism.
- 7. List the steps a microbe has to take to get to the point where it can cause disease.
- 8. List several portals of entry.
- 9. Define infectious dose.

- 10. Describe three ways microbes cause tissue damage.
- 11. Differentiate between endotoxins and exotoxins.
- 12. Provide a definition of virulence factors.
- 13. Draw a diagram of the stages of disease in a human.
- 14. List several different modes of transmission of infectious agents.
- 15. Define healthcare-associated infection, and list the three most common types.
- 16. List Koch's postulates, and when they might not be appropriate in establishing causation.
- 17. Be able to differentiate the science of epidemiology from traditional medical practice.
- 18. Be able to identify the need for some diseases being denoted "notifiable."
- 19. Be able to define incidence and prevalence.
- 20. Be able to discuss point-source, common-source, and propagated epidemics, and predict the shape of the epidemic curves associated with each.

Host Defenses: Overview and Nonspecific Immunity

- 1. Summarize what the three lines of defense are.
- 2. Identify three components of the first line of defense.
- 3. Define marker, and discuss its importance in the second and third lines of defense.
- 4. Name four body compartments that participate in immunity.
- 5. List the components of the reticuloendothelial system.
- 6. Describe the structure and function of the lymphatic system.
- 7. Name three kinds of blood cells that function in nonspecific immunity and the most important function of each.
- 8. Name two kinds of lymphocytes involved in specific immunity.
- 9. List the four major categories of nonspecific immunity.
- 10. Outline the steps in phagocytosis.
- 11. Outline the steps in inflammation.
- 12. Discuss the mechanism of fever and what it accomplishes.
- 13. Name four types of antimicrobial proteins.
- 14. Compose one good overview sentence about the purpose and the mode of action of the complement system.

Host Defenses: Specific Immunity and Immunization

- 1. Describe how the third line of defense is different from the other two.
- 2. List the four stages of a specific immune response.
- 3. Discuss the role of cell markers in the immune response.
- 4. Describe the two different types of major histocompatibility complex (MHC I and MHC II) and identify which kinds of cells have MHC I and which have MHC II.
- 5. Summarize the maturation process of both B cells and T cells.
- Explain how our bodies are equipped with lymphocytes capable of responding to nearly any antigen imaginable.
- 7. Describe the B-cell receptor and the T-cell receptor.

- 8. Contrast the way T cells recognize antigen with the way B cells do.
- 9. Outline the processes of clonal selection and expansion.
- 10. Compare the terms hapten, antigen, immunogen, and epitope.
- 11. List characteristics of antigens that optimize their immunogenicity.
- 12. List the types of cells that can act as antigen-presenting cells.
- 13. List the three major types of cells that T cells will differentiate into after stimulation.
- 14. De3scribe the main functions of these three types of T cells.
- 15. Explain how Tc cells kill other cells.
- 16. Diagram the steps in the B-cell response.
- 17. Make a detailed drawing of an antibody molecule.
- 18. Explain the various end results of antibody binding to an antigen.
- 19. List the five types of antibodies and important facts about each.
- 20. Describe the memory response.
- 21. List and define the four different descriptors of specific immune states.
- 22. Discuss the qualities of an effective vaccine.
- 23. Name the two major categories of vaccines and then the subcategories under each.
- 24. Discuss the pros and cons of killed (or inactivated) versus attenuated vaccines.
- 25. Describe the principle behind DNA vaccines.

One Health: The Interconnected Health of the Environment, Humans, and Other Animals

- 1. Know how the environment, humans, human activity, and other animals can influence each other.
- 2. Define microbial ecology.
- 3. Summarize why our view of the abundance of microbes on earth has changed in recent years.
- 4. Outline the basic process used to perform metagenomic analysis of the environment.
- 5. Differentiate between classic and current zoonotic infections. Give an example of each.
- 6. Diagram the hydrologic cycle.
- 7. Discuss what metagenomic sampling of oceans has revealed.
- 8. Define eutrophication, and discuss its consequences.
- 9. Outline the steps in water purification.
- 10. Differentiate water purification from sewage treatment.
- 11. Describe the primary and secondary phases of sewage treatment.
- 12. List five important pathogens of drinking water.
- 13. Explain why indicator bacteria have been used as surrogates for pathogenic bacteria in examination of water safety.
- 14. Discuss why microorganisms themselves might be useful as food products.
- 15. Report the 10-year trends in food-borne illnesses.
- 16. Outline basic principles of using temperature to preserve food.
- 17. List mechanisms other than temperature that are used to preserve food.
- 18. State the general aim(s) of industrial microbiology.

19. List five different types of substances produced from industrial microbiology, and their

applications.